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Abstract. Let Gn denote either the group SO(2n + 1, F ) or Sp(2n, F ) over a non-
archimedean local field. We determine the reducibility criteria for a parabolically induced
representation of the form 〈∆〉o σ, where 〈∆〉 stands for a Zelevinsky segment represen-
tation of the general linear group and σ stands for a discrete series representation of Gn,
in terms of the Mœglin-Tadić classification.

1. Introduction

In his seminal work [25], Zelevinsky introduced two classes of irreducible representations
attached to segments of cuspidal representations, which made a huge impact on latter
investigations in the representation theory of general linear and classical p-adic groups. By
a segment of cuspidal representations, we mean a set of the form ∆ = {νaρ, νa+1ρ, . . . , νbρ},
where ρ is an irreducible cuspidal representation of a general linear group and b−a is a non-
negative integer. Following [25], to the segment ∆ we attach irreducible representations
〈∆〉 and δ(∆), the unique irreducible subrepresentation and the unique irreducible quotient
of the induced representation

νaρ× νa+1ρ× · · · × νbρ,
respectively. The irreducible representation 〈∆〉 is now called the Zelevinsky segment
representation, while irreducible representations of the form δ(∆) exhaust the set of irre-
ducible essentially square-integrable representations of p-adic general linear groups, and
play a fundamental role in the Langlands classification.

Naturally, representations of classical p-adic groups induced from ones having represen-
tations of the form δ(∆) on the general linear group parts have been extensively studied
over the years. In some particular cases are obtained precise results on the structure of
induced representations of such form. For instance, reducibility of generalized principal
series and standard representations can be seen in [17] and [18], while complete descrip-
tion of the composition factors in some cases when the representation is induced from the
strongly positive discrete series on the classical group part can be seen in [11] and [16].

In [25] is also provided a purely algebraic classification of irreducible representations of p-
adic general linear groups, which is completely based on the Zelevinsky segments. In terms
of that classification, a complete description of the unitary dual of p-adic general linear
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group has been obtained in [21]. We note that there is also a classification of irreducible
representations of classical p-adic groups based on the Zelevinsky segments, dual to the
Langlands one, given in [5].

Our aim is to study the structure of representations induced from the ones having the
Zelevinsky segment on the general linear group part. We provide the reducibility criteria
for representations of the form 〈∆〉 o σ, induced from the representation 〈∆〉 ⊗ σ of the
maximal Levi subgroup, having the Zelevinsky segment on the general linear group part,
and a discrete series representation σ of Gn on the classical group part. Here Gn denotes
a symplectic or a special odd orthogonal group of split rank n. Our criteria are expressed
in terms of the admissible triples, which are in one-to-one correspondence with discrete
series, by the Mœglin-Tadić classification. Our results should lead to a rather precise
understanding of the composition series of representation of studied type (in a particular
case given in [12]), and could be used to construct some elements appearing in the unitary
dual of the group Gn.

Our main strategy is rather straightforward. To prove that some 〈∆〉o σ is irreducible,
we show that all its irreducible subquotients are mutually isomorphic, and then we show
that 〈∆〉 o σ can contain at most one such an irreducible representation. On the other
hand, to obtain reducibility of 〈∆〉 o σ, we just construct two mutually non-isomorphic
irreducible subquotients.

We use an adjustment of the methods presented in [16, 17] and in [11] to the case of
representations induced from the Zelevinsky segment. The structural formula enables us
to provide a calculation of some prominent members appearing in the Jacquet modules of
〈∆〉 o σ. Starting from the Langlands classification, we use the provided calculation to
determine possible irreducible subquotients of 〈∆〉 o σ. In the Langlands classification,
on the classical group part of an induced representation appears an irreducible tempered
member. To handle this part, we use the combinatorics of the classifications of discrete
series and tempered representations, given in [8] and [24]. After obtaining the Langlands
parameters of a potential irreducible subquotient, we show that the obtained representation
is contained in the composition series of 〈∆〉oσ using a combination of the Jacquet modules
method and methods of the intertwining operators.

For the convenience of the reader, we cite the main reducibility criteria here.

Theorem 1.1. Let ρ stand for an irreducible self-contragredient cuspidal representation
of GL(nρ, F ), and let a, b ∈ R such that a + b ∈ Z≥0. Let ∆ = [νaρ, νbρ]. Let σ denote
a discrete series of Gn, and let (Jord(σ), σcusp, εσ) stand for the corresponding admissible
triple. Suppose that Jordρ(σ) 6= ∅ and that for x ∈ Jordρ(σ) we have 2a+ 1− x ∈ 2Z.

(1) Suppose that a ≥ 1. The induced representation 〈∆〉 o σ is irreducible if and only if
one of the following holds:
• 2a− 1 6∈ Jordρ(σ),
• x ∈ Jordρ(σ) for all x ∈ {2a − 1, 2a + 1, . . . , 2b + 1}, and εσ((x , ρ), (x, ρ)) = −1

for all x ∈ {2a+ 1, 2a+ 3, . . . , 2b+ 1}.
(2) Suppose that a ≤ 1

2
and let c = 2b + 3− 2db + 1

2
e, where dxe denotes the least integer

greater than or equal to x. If a ∈ Z, suppose additionally that charF = 0. The
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induced representation 〈∆〉 o σ is irreducible if and only if x ∈ Jordρ(σ) for all x ∈
{c, c+ 2, . . . , 2b+ 1}, εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {c+ 2, c+ 4, . . . , 2b+ 1}, and
εσ(2, ρ) = −1 if 2a+ 1 is even.

The following corollary parallels [23, Theorem 13.2].

Corollary 1.2. Suppose that charF = 0. Let ρ stand for an irreducible self-contragredient
cuspidal representation of GL(nρ, F ), and let a, b ∈ R such that a + b ∈ Z≥0. Let ∆ =
[νaρ, νbρ], and let σ denote a discrete series of Gn. The induced representation 〈∆〉o σ is
irreducible if and only if νc o σ is irreducible for all νcρ ∈ ∆.

In the following section we introduce the notation and obtain several technical results
which are frequently used in the paper. Reducibility criteria in basic cases are provided
in Section 3. The main results are obtained in Sections 4 and 5, using a case-by-case
consideration.

The author would like to thank Goran Muić for his suggestion to study this subject.
The author would like to thank the referee for a number of corrections and very useful
suggestions.

This work has been supported in part by Croatian Science Foundation under the project
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2. Preliminaries

Let F denote a non-archimedean local field of the characteristic different than two. Let
us describe the groups that we consider.

Let Jn = (δi,n+1−j)1≤i,j≤n denote the n×n matrix, where δi,n+1−j stands for the Kronecker
symbol. For a square matrix g, we denote by gt its transposed matrix, and by gτ its
transposed matrix with respect to the second diagonal. In what follows, we shall fix one
of the series of classical groups

Sp(n, F ) =

{
g ∈ GL(2n, F ) :

(
0 −Jn
Jn 0

)
gt
(

0 −Jn
Jn 0

)
= g−1

}
,

or

SO(2n+ 1, F ) =

{
g ∈ GL(2n+ 1, F ) : gτ = g−1

}
and denote by Gn the rank n group belonging to the series which we fixed.

The set of standard parabolic subgroups will be fixed in a usual way, i.e., we fix a minimal
F -parabolic subgroup in the classical group Gn consisting of upper-triangular matrices
in the usual matrix realization of the classical group. Then the Levi factors of standard
parabolic subgroups have the formM ∼= GL(n1, F )×· · ·×GL(nk, F )×Gn′ , whereGL(m,F )
denotes the general linear group of rank m over F . If δi is a representation of GL(ni, F ) and
τ a representation of Gn′ , the normalized parabolically induced representation IndGnM (δ1 ⊗
· · · ⊗ δk ⊗ τ) will be denoted by δ1 × · · · × δk o τ . We use similar notation to denote a
parabolically induced representation of GL(m,F ).

By Irr(Gn) we denote the set of all irreducible admissible representations of Gn. Let
R(Gn) denote the Grothendieck group of admissible representations of finite length of Gn
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and define R(G) = ⊕n≥0R(Gn). In a similar way we define Irr(GL(n, F )) and R(GL) =
⊕n≥0R(GL(n, F )). In R(G) we have π o σ = π̃ o σ and π1 × π2 o σ = π2 × π1 o σ.

For σ ∈ Irr(Gn) and 1 ≤ k ≤ n we denote by r(k)(σ) the normalized Jacquet module of σ
with respect to parabolic subgroup P(k) having the Levi subgroup equal to GL(k, F )×Gn−k.
We identify r(k)(σ) with its semisimplification in R(GL(k, F ))⊗R(Gn−k) and consider

µ∗(σ) = 1⊗ σ +
n∑
k=1

r(k)(σ) ∈ R(GL)⊗R(G).

We denote by ν a composition of the determinant mapping with the normalized absolute
value on F . Let ρ ∈ R(GL) denote an irreducible supercuspidal representation. By a
segment ∆ we mean a set of the form [ρ, νmρ] := {ρ, νρ, . . . , νmρ}, for a non-negative integer
m. The induced representation ρ×νρ×· · ·×νmρ has a unique irreducible subrepresentation
([25]), denoted by 〈∆〉. Representation 〈∆〉 is called the Zelevinsky segment representation
and plays a fundamental role in the description of the unitary dual of the group GL(n, F ).

The induced representation νmρ× νm−1ρ× · · · × ρ also has a unique irreducible subrep-
resentation ([25]), denoted by δ(∆). Representation δ(∆) is essentially square-integrable,
and every irreducible essentially square-integrable representation of GL(n, F ) is of the form
δ(∆), by [25].

We study reducibility of the induced representation of the form 〈∆〉 o σ, where ∆ =
[νaρ, νbρ] and σ ∈ R(Gn) is a discrete series. Since in R(G) we have 〈[νaρ, νbρ]〉 o σ =
〈[ν−bρ̃, ν−aρ̃]〉o σ, we may assume a+ b ≥ 0.

We frequently use the following structural formulas, obtained in [5, Theorem 1.4] and in
[22]:

Theorem 2.1. Let ρ ∈ Irr(GL(m,F )) be a supercuspidal representation and k, l ∈ R such
that k + l ∈ Z≥0. Let σ denote an admissible representation of finite length of Gn. Write
µ∗(σ) =

∑
π,σ′ π ⊗ σ′. Then we have:

µ∗(〈[ν−kρ, νlρ]〉o σ) =
k+l+1∑
i=0

i∑
j=0

∑
π,σ′

〈[ν−lρ̃, ν−i+kρ̃]〉 × 〈[ν−kρ, νj−k−1ρ]〉 × π

⊗ 〈[νj−kρ, νi−k−1ρ]〉o σ′,

µ∗(δ([ν−kρ, νlρ]) o σ) =
l∑

i=−k−1

l∑
j=i

∑
π,σ′

δ([ν−iρ̃, νkρ̃])× δ([νj+1ρ, νlρ])× π

⊗ δ([νi+1ρ, νjρ]) o σ′.

We briefly recall the Langlands classification for general linear groups. We favor the
subrepresentation version of this classification over the quotient one.

For every irreducible essentially square-integrable representation δ ∈ R(GL), there is a
unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable. Note that e(δ([νaρ, νbρ])) = (a + b)/2.
Suppose that δ1, δ2, . . . , δk are irreducible essentially square-integrable representations such
that e(δ1) ≤ e(δ2) ≤ . . . ≤ e(δk). Then the induced representation δ1 × δ2 × · · · × δk
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has a unique irreducible subrepresentation, which we denote by L(δ1, δ2, . . . , δk). This
irreducible subrepresentation is called the Langlands subrepresentation, and it appears
with multiplicity one in the composition series of δ1 × δ2 × · · · × δk. Every irreducible
representation π ∈ R(GL) is isomorphic to some L(δ1, δ2, . . . , δk) and, for a given π, the
representations δ1, δ2, . . . , δk are unique up to a permutation.

If we let δi = δ([νaiρi, ν
biρi]), note that for ai = bi, ai + 1 = ai+1 for all i, and ρi ∼= ρj for

all i and j, we have L(δ1, δ2, . . . , δk) ∼= 〈[νa1ρ1, νa1+k−1ρ1]〉.
Similarly, throughout the paper we use the subrepresentation version of the Langlands

classification for classical groups, since it is more appropriate for our Jacquet module
considerations. So, we realize a non-tempered irreducible representation π of Gn as the
unique irreducible (Langlands) subrepresentation of an induced representation of the form
δ1 × δ2 × · · · × δk o τ , where τ is an irreducible tempered representation of some Gt, and
δ1, δ2, . . . , δk ∈ R(GL) are irreducible essentially square-integrable representations such
that e(δ1) ≤ e(δ2) ≤ · · · ≤ e(δk) < 0. In this case, we write π = L(δ1, δ2, . . . , δk, τ).

The next lemma is [6, Lemma 5.5].

Lemma 2.2. Suppose that π ∈ R(Gn) is an irreducible representation, λ an irreducible
representation of the Levi subgroup M , and π is a subrepresentation of IndGnM (λ). If L > M ,
then there is an irreducible subquotient ρ of IndLM(λ) such that π is a subrepresentation of
IndGnL (ρ).

Let us now recall the Mœglin-Tadić classification of discrete series for groups that we con-
sider. We note that it now holds unconditionally, due to results of [1], [14, Théorème 3.1.1]
and [3, Theorem 7.8]. A shorter and more algebraic form of this classification, which covers
both classical and odd general spin groups, can be found in [10]. Every discrete series in Gn

is uniquely described by three invariants: the partial cuspidal support, the Jordan block
and the ε-function.

The partial cuspidal support of a discrete series σ ∈ Irr(Gn) is an irreducible cuspidal
representation σcusp of some Gm such that there is an irreducible admissible representation
π of GL(nπ, F ) such that σ is a subrepresentation of π o σcusp.

The Jordan block of σ, denoted by Jord(σ), is a set of all pairs (x, ρ) where ρ ∼= ρ̃ is an
irreducible cuspidal representation of some GL(nρ, F ) and x > 0 is an integer such that
the following two conditions are satisfied:

(1) x is even if and only if L(s, ρ, r) has a pole at s = 0. The local L-function L(s, ρ, r)
is the one defined by Shahidi (see for instance [19], [20]), where r =

∧2Cnρ is the
exterior square representation of the standard representation on Cnρ of GL(nρ,C) if
Gn is a symplectic or even-orthogonal group and r = Sym2Cnρ is the symmetric-square
representation of the standard representation on Cnρ of GL(nρ,C) if Gn is an odd-
orthogonal group.

(2) The induced representation

δ([ν−(x−1)/2ρ, ν(x−1)/2ρ]) o σ

is irreducible.
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To explain the notion of the ε-function, we first define the Jordan triples. This are the
triples of the form (Jord, σ′, ε) where

• σ′ is an irreducible cuspidal representation of some Gn.
• Jord is a finite set (possibly empty) of pairs (x, ρ), where ρ is an irreducible self-

contragredient cuspidal representation of GL(nρ, F ) and x is a positive integer
which is even if and only if L(s, ρ, r) has a pole at s = 0 (for the local L-function as
above). For an irreducible selfcontragredient cuspidal representation ρ of GL(nρ, F )
we write Jordρ = {x : (x, ρ) ∈ Jord}. If Jordρ 6= ∅ and x ∈ Jordρ, denote x =
max{y ∈ Jordρ : y < x}, if it exists.
• ε is a function defined on a subset of Jord∪(Jord× Jord) and attains the values

1 and -1. If (x, ρ) ∈ Jord, then ε(x, ρ) is not defined if and only if x is odd
and (y, ρ) ∈ Jord(σ′) for some positive integer y. Next, ε is defined on a pair
(x, ρ), (y, ρ′) ∈ Jord if and only if ρ ∼= ρ′ and x 6= y.

It follows from the compatibility conditions, which can be found in [10], [15] or [17],
that it is enough to know the value of ε on the consecutive pairs (x , ρ), (x, ρ) and on the
minimal element of Jordρ (if it is defined on elements, not only on pairs).

Suppose that, for the Jordan triple (Jord, σ′, ε), there is (x, ρ) ∈ Jord such that we have
ε((x , ρ), (x, ρ)) = 1. If we put Jord′ = Jord \{(x , ρ), (x, ρ)} and consider the restriction ε′

of ε to Jord′ ∪(Jord′× Jord′), we obtain a new Jordan triple (Jord′, σ′, ε′), and we say that
such Jordan triple is subordinated to (Jord, σ′, ε).

We say that the Jordan triple (Jord, σ′, ε) is a triple of alternated type if ε((x , ρ), (x, ρ)) =
−1 holds whenever x is defined and there is an increasing bijection φρ : Jordρ → Jord′ρ(σ

′),

where Jord′ρ(σ
′) equals Jordρ(σ

′) ∪ {0} if a is even and ε(min(Jordρ), ρ) = 1 and Jord′ρ(σ
′)

equals Jordρ(σ
′) otherwise.

The Jordan triple (Jord, σ′, ε) dominates the Jordan triple (Jord′, σ′, ε′) if there is a
sequence of Jordan triples (Jordi, σ

′, εi), 0 ≤ i ≤ k, such that (Jord0, σ
′, ε0) = (Jord, σ′, ε),

(Jordk, σ
′, εk) = (Jord′, σ′, ε′) and (Jordi, σ

′, εi) is subordinated to (Jordi−1, σ
′, εi−1) for

i ∈ {1, 2, . . . , k}. The Jordan triple (Jord, σ′, ε) is called an admissible triple if it dominates
a triple of alternated type.

Classification given in [13] and [15] states that there is a one-to-one correspondence
between the set of all discrete series in Irr(G) and the set of all admissible triples (Jord, σ′, ε)
given by σ = σ(Jord,σ′,ε), such that σcusp = σ′ and Jord(σ) = Jord.

Throughout the paper, the admissible triple corresponding to discrete series σ ∈ R(G)
will be denoted by (Jord(σ), σcusp, εσ).

We close this section with several useful technical results.

Lemma 2.3. Let π denote the irreducible representation L(ν−cρ̃, δ1, δ2, . . . , δk, τ) of Gn

such that −c < e(δ1). Suppose that L(δ1, δ2, . . . , δk, τ) is an irreducible subquotient of
〈[νdρ, νc−1ρ]〉 o σ, for some discrete series σ and −c + 1 ≤ d. Then π is an irreducible
subquotient of 〈[νdρ, νcρ]〉o σ.

Proof. Since both L(ν−cρ̃, δ1, δ2, . . . , δk, τ) and ν−cρ̃oL(δ1, δ2, . . . , δk, τ) are subrepresenta-
tions of the induced representation ν−cρ̃×δ1×· · ·×δkoτ , which contains a unique irreducible
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subrepresentation, it follows that π is a subrepresentation of ν−cρ̃ o L(δ1, δ2, . . . , δk, τ).
Thus, π is an irreducible subquotient of ν−cρ̃ × 〈[νdρ, νc−1ρ]〉 o σ. In an appropriate
Grothendieck group we have

ν−cρ̃× 〈[νdρ, νc−1ρ]〉o σ = 〈[νdρ, νc−1ρ]〉 × νcρo σ,

so there is some irreducible subquotient π′ of 〈[νdρ, νc−1ρ]〉 × νcρ such that π ≤ π′ o σ. It
can be easily seen that the only possible irreducible subquotients of 〈[νdρ, νc−1ρ]〉×νcρ are
〈[νdρ, νcρ]〉 and L(νdρ, . . . , νc−2ρ, δ([νc−1ρ, νcρ])).

Since π is a subrepresentation of ν−cρ̃oL(δ1, δ2, . . . , δk, τ), Frobenius reciprocity implies
that µ∗(π) ≥ ν−cρ̃ ⊗ L(δ1, δ2, . . . , δk, τ). Using the structural formula, together with the
square-integrability of σ, we deduce that µ∗(L(νdρ, . . . , νc−2ρ, δ([νc−1ρ, νcρ]))oσ) does not
contain ν−cρ̃⊗L(δ1, δ2, . . . , δk, τ). Thus, π ≤ 〈[νdρ, νcρ]〉oσ and the lemma is proved. �

Lemma 2.4. Suppose that ρ ∼= ρ̃. Let π denote the irreducible representation L(ν−cρ, ν−cρ,
δ1, δ2, . . . , δk, τ) of Gn such that −c < e(δ1). Suppose that L(δ1, δ2, . . . , δk, τ) is an ir-
reducible subquotient of 〈[ν−c+1ρ, νc−1ρ]〉 o σ, for some discrete series σ. Then π is an
irreducible subquotient of 〈[ν−cρ, νcρ]〉o σ.

Proof. In the same way as in the proof of the previous lemma we deduce that there is an
irreducible subquotient π′ of ν−cρ × 〈[ν−c+1ρ, νc−1ρ]〉 × νcρ such that π ≤ π′ o σ. Since
µ∗(π) contains an irreducible constituent of the form ν−cρ× ν−cρ⊗ π′′, it follows directly
from the structural formula and square-integrability of σ that π′ ∼= 〈[ν−cρ, νcρ]〉. This ends
the proof. �

Lemma 2.5. Suppose that ρ ∼= ρ̃. Let π denote the irreducible representation L(ν−
1
2ρ, τ)

of Gn such that τ is an irreducible subquotient of ν
1
2ρoσ, for some discrete series σ. Then

π is an irreducible subquotient of 〈[ν− 1
2ρ, ν

1
2ρ]〉o σ.

Proof. Obviously, π ≤ ν−
1
2ρ× ν 1

2ρo σ. In the appropriate Grothendieck group we have

ν−
1
2ρ× ν

1
2ρo σ = 〈[ν−

1
2ρ, ν

1
2ρ]〉o σ + δ([ν−

1
2ρ, ν

1
2ρ]) o σ.

Frobenius reciprocity shows that µ∗(π) ≥ ν−
1
2ρ ⊗ τ . From Theorem 2.1 and square-

integrability of σ we deduce that µ∗(δ([ν−
1
2ρ, ν

1
2ρ]) o σ) does not contain ν−

1
2ρ⊗ τ . Con-

sequently, π has to be an irreducible subquotient of 〈[ν− 1
2ρ, ν

1
2ρ]〉o σ. �

The following technical lemma follows directly from Theorem 2.1 and Casselman square-
integrability criterion.

Lemma 2.6. Let ρ ∈ R(GL) stand for an irreducible cuspidal representation and let
a, b ∈ R such that a+b ∈ Z≥0, and let ∆ = [νaρ, νbρ]. Let σ ∈ R(G) denote a discrete series
representation. Suppose that L(δ1, δ2, . . . , δk, τ) is an irreducible non-tempered subquotient
of 〈∆〉o σ. We have:

(1) If δ1 ∼= νxρ′, for some cuspidal ρ′ ∈ R(GL), then ρ′ ∈ {ρ, ρ̃}, x ∈ {a,−b} and
L(δ2, . . . , δk, τ) is an irreducible subquotient of 〈∆′〉oσ, for ∆′ ∈ {[νaρ, νb−1ρ], [νa+1ρ, νbρ]}.
Also, if a ≥ 0, then ρ′ ∼= ρ̃, x = −b and ∆′ = [νaρ, νb−1ρ].
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(2) If δ1 ∼= δ([νxρ′, νx+1ρ′]), for some cuspidal ρ′ ∈ R(GL), then ρ′ ∼= ρ ∼= ρ̃, 2a ∈ Z,
x = −b = a−1 and L(δ2, . . . , δk, τ) is an irreducible subquotient of 〈[νa+1ρ, νb−1ρ]〉oσ.

3. Reducibility criteria in some basic cases

Let ρ ∈ R(GL) stand for an irreducible cuspidal representation, and let a, b ∈ R such
that a+ b ∈ Z≥0. Let ∆ = [νaρ, νbρ]. Let σ ∈ R(G) denote a discrete series representation.

We start with a description of tempered irreducible subquotients of some induced rep-
resentations of studied type.

Lemma 3.1. If 2a 6∈ Z, then 〈∆〉oσ does not contain an irreducible tempered subquotient.
Suppose that 2a ∈ Z and that one of the following holds:

(1) ρ 6∼= ρ̃,
(2) Jordρ(σ) 6= ∅, 2a ∈ Z, and 2a+ 1− x 6∈ 2Z, for x ∈ Jordρ(σ).

Then 〈∆〉o σ contains an irreducible tempered subquotient if and only if a = b = 0.

Proof. By the classification of discrete series, 〈∆〉 o σ does not contain a discrete series
subquotient.

Let us now suppose that 〈∆〉o σ contains an irreducible tempered subquotient which is
not square-integrable. Then there are irreducible cuspidal representation ρ′ ∈ R(GL),
x ≥ 0, and irreducible tempered representation τ ∈ R(G) such that µ∗(〈∆〉 o σ) ≥
δ([ν−xρ′, νxρ′]) ⊗ τ . By the structural formula, there are 0 ≤ j ≤ i ≤ b − a + 1 and
an irreducible constituent π ⊗ σ′ of µ∗(σ) such that

δ([ν−xρ′, νxρ′]) ≤ 〈[ν−bρ̃, ν−i−aρ̃]〉 × 〈[νaρ, νj+a−1ρ]〉 × π.
Square-integrability of σ implies that (x, ρ′) ∈ {(−a, ρ), (b, ρ̃)}. Since νyρ′ does not appear
in the cuspidal support of σ for y such that x + y ∈ Z, it follows that δ([ν−xρ′, νxρ′]) ≤
〈[ν−bρ̃, ν−i−aρ̃]〉 × 〈[νaρ, νj+a−1ρ]〉. Since δ([ν−xρ′, νxρ′]) is irreducible essentially square-
integrable, either x = 0 or x = 1

2
. This implies 2a ∈ Z. But, x = 1

2
implies a = b = 1

2
, i = 0

and j = 1, which is impossible. Consequently, x = a = 0, ρ′ ∼= ρ, and τ ≤ 〈[νρ, νbρ]〉o σ.
Obviously, µ∗(τ) does not contain an irreducible constituent of the form ρ′′ ⊗ τ ′, for some
irreducible cuspidal ρ′′ ∈ R(GL), so τ has to be square-integrable, but this is possible only
for b = 0.

On the other hand, if a = b = 0, we have 〈∆〉oσ ∼= ρoσ, which contains an irreducible
tempered representation. �

We frequently use the following multiplicity one result. For a real number x, by dxe we
denote the least integer greater than or equal to x.

Lemma 3.2. If a is an integer and a ≤ 0, let τ denote an irreducible subrepresentation of
ρo σ, otherwise let τ = σ. If a = 0, let c = −1 and if a > 0 let c = −a.

(1) If a ≥ 0, let π denote ν−bρ̃⊗ ν−b+1ρ̃⊗ · · · ⊗ νcρ̃⊗ τ .
(2) If a < 0 and either ρ 6∼= ρ̃ or 2a 6∈ Z, let π denote

ν−bρ̃⊗ ν−b+1ρ̃⊗ · · · ⊗ ν−b+dbe−1ρ̃⊗ νaρ⊗ νa+1ρ⊗ · · · ⊗ νa−daeρ⊗ τ,
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(3) If a < 0, ρ ∼= ρ̃ and 2a ∈ Z, let π denote

ν−bρ⊗ ν−b+1ρ⊗ · · · ⊗ νa−1ρ⊗ νaρ× νaρ⊗ νa+1ρ× νa+1ρ⊗ · · · ⊗ νdae−a−1ρ× νdae−a−1ρ⊗ τ.
Then the multiplicity of π in the Jacquet module of 〈∆〉oσ with respect to the appropriate
parabolic subgroup equals one.

Proof. We prove only the third part of the lemma, other two parts can be proved in the
same way but more easily. We assume that −a < b, since the case analogous to −a = b then
appears as a subcase. Transitivity of Jacquet modules implies that there is an irreducible
constituent ν−bρ⊗ π1 of µ∗(〈∆〉o σ) such that ν−b+1ρ⊗ · · · ⊗ νa−1ρ⊗ νaρ× νaρ⊗ νa+1ρ×
νa+1ρ⊗· · ·⊗νdae−a−1ρ×νdae−a−1ρ⊗τ is contained in the Jacquet module of π1 with respect
to the appropriate parabolic subgroup. Thus, there are 0 ≤ j ≤ i ≤ b − a + 1 and an
irreducible constituent π′ ⊗ σ′ of µ∗(σ) such that

ν−bρ ≤ 〈[ν−bρ, ν−i−aρ]〉 × 〈[νaρ, νj+a−1ρ]〉 × π′.
It follows at once that i = b − a + 1, j = 0, and π1 ≤ 〈[νaρ, νb−1ρ]〉 o σ. Also, π1 ≤
〈[νaρ, νb−1ρ]〉o σ and the multiplicity of π in the Jacquet module of 〈∆〉o σ with respect
to the appropriate parabolic subgroup equals the multiplicity of ν−b+1ρ ⊗ · · · ⊗ νa−1ρ ⊗
νaρ × νaρ ⊗ νa+1ρ × νa+1ρ ⊗ · · · ⊗ νdae−a−1ρ × νdae−a−1ρ ⊗ τ in the Jacquet module of
〈[νaρ, νb−1ρ]〉o σ with respect to the appropriate parabolic subgroup.

Repeating this procedure, we get that the multiplicity of π in the Jacquet module of
〈∆〉 o σ with respect to the appropriate parabolic subgroup equals the multiplicity of
νaρ × νaρ ⊗ νa+1ρ × νa+1ρ ⊗ · · · ⊗ νdae−a−1ρ × νdae−a−1ρ ⊗ τ in the Jacquet module of
〈[νaρ, ν−aρ]〉o σ with respect to the appropriate parabolic subgroup.

Again, transitivity of Jacquet modules implies that there is an irreducible constituent
νaρ×νaρ⊗π2 of µ∗(〈[νaρ, ν−aρ]〉oσ) such that νa+1ρ×νa+1ρ⊗· · ·⊗νdae−a−1ρ×νdae−a−1ρ⊗
τ is contained in the Jacquet module of π2 with respect to the appropriate parabolic
subgroup. In the same way as before we deduce that π2 ≤ 〈[νa+1ρ, ν−a−1ρ]〉 o σ and the
multiplicity of π in the Jacquet module of 〈∆〉oσ with respect to the appropriate parabolic
subgroup equals the multiplicity of νa+1ρ× νa+1ρ⊗ · · · ⊗ νdae−a−1ρ× νdae−a−1ρ⊗ τ in the
Jacquet module of 〈[νa+1ρ, ν−a−1ρ]〉oσ with respect to the appropriate parabolic subgroup.

Repeating this procedure, we obtain that the multiplicity of π in the Jacquet module of
〈∆〉o σ with respect to the appropriate parabolic subgroup equals the multiplicity of τ in
ρ o σ if a ∈ Z, and the multiplicity of τ in σ otherwise. Thus, π appears in the Jacquet
module of 〈∆〉 o σ with respect to the appropriate parabolic subgroup with multiplicity
one. �

We provide several basic reducibility criteria.

Proposition 3.3. If ρ 6∼= ρ̃ or 2a is not an integer, then 〈∆〉o σ is irreducible.

Proof. We determine all irreducible subquotients of 〈∆〉o σ. Thus, suppose that we have
L(δ1, δ2, . . . , δk, τ) ≤ 〈∆〉 o σ, and let δi ∼= δ([νaiρi, ν

biρi]), for i = 1, 2, . . . , k. Let us
first prove that ai = bi for all i. Suppose, on the contrary, that there is some j such
that aj ≤ bj − 1 and let m = min{j : aj ≤ bj − 1}. Then ai = bi for i < m and a
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repeated application of Lemma 2.6 implies that there are non-negative integers s, t such
that L(δm, δm+1, . . . , δk, τ) is an irreducible subquotient of 〈[νa+sρ, νb−tρ]〉o σ.

Since L(δm, δm+1, . . . , δk, τ) is a subrepresentation of δm× δm+1× · · ·× δko τ , Frobenius
reciprocity and transitivity of Jacquet modules imply that there is some irreducible con-
stituent δm⊗ σ′ of µ∗(L(δm, δm+1, . . . , δk, τ)). Thus, µ∗(〈[νa+sρ, νb−tρ]〉o σ) ≥ δm⊗ σ′ and
there are 0 ≤ j ≤ i ≤ b− t− a− s+ 1 and an irreducible constituent π⊗ σ′′ of µ∗(σ) such
that

δm ≤ 〈[ν−b+tρ̃, ν−i−a−sρ̃]〉 × 〈[νa+sρ, νj+a+s−1ρ]〉 × π.
Since e(δm) < 0, square-integrability of σ implies that we can not have both i = b − t −
a− s+ 1 and j = 0. Since νa+s+xρ and ν−b+t+yρ̃ do not appear in the cuspidal support of
σ for x, y ∈ Z, it follows that

δm ≤ 〈[ν−b+tρ̃, ν−i−a−sρ̃]〉 × 〈[νa+sρ, νj+a+s−1ρ]〉.

Since δm is irreducible essentially square-integrable, the assumption that am < bm implies
that we have either νa+sρ = ν−b+t−1ρ̃ or νa+sρ = ν−b+t+1ρ̃, a contradiction. Thus, ai = bi
for all i.

A repeated application of Lemma 2.3 now implies that τ is an irreducible subquotient
of 〈[νa+sρ, νb−tρ]〉 o σ, for some s, t ∈ Z≥0. Since ai < 0 for all i, Lemma 3.1 shows that
τ ∼= ρ o σ if a is an integer, and τ ∼= σ otherwise. Note that the induced representation
ρo σ is irreducible since ρ 6∼= ρ̃.

Consequently, if a ≥ 0, L(δ1, . . . , δk, τ) is a unique irreducible subrepresentation of the
induced representation

ν−bρ̃× ν−b+1ρ̃× · · · × νcρ̃o τ,

where c stands for −a if a > 0, and c = −1 if a = 0.
On the other hand, if a < 0, L(δ1, . . . , δk, τ) is a unique irreducible subrepresentation of

the induced representation

ν−bρ̃× ν−b+1ρ̃× · · · × ν−b+dbe−1ρ̃× νaρ× νa+1ρ× · · · × νa−daeρo τ.

Note that the assumption of the proposition implies that νb−sρ̃ × νa+tρ ∼= νa+tρ × νb−sρ̃
for s, t ∈ Z.

This shows that all irreducible subquotients of 〈∆〉 o σ are mutually isomorphic, and
Lemma 3.2 implies that such an irreducible subquotient appears in the composition series
of 〈∆〉o σ with multiplicity one, so 〈∆〉o σ is irreducible. �

Proposition 3.4. If Jordρ(σ) 6= ∅, 2a ∈ Z, but 2a + 1 − x 6∈ 2Z, for x ∈ Jordρ(σ), then
〈∆〉o σ is irreducible.

Proof. Similarly as in the proof of the previous proposition, we determine all irreducible
subquotients of 〈∆〉oσ. Suppose that L(δ1, δ2, . . . , δk, τ) ≤ 〈∆〉oσ and let δi ∼= δ([νaiρi, ν

biρi]).
We prove that for all i = 1, 2, . . . , k we have ai = bi and ρi ∼= ρ.

Let us first assume that there is some j ∈ {1, 2, . . . , k} such that aj ≤ bj − 2 and let
m = min{j : aj ≤ bj − 2}. By Lemma 2.6, there are non-negative integers s, t such that
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µ∗(〈[νa+sρ, νb−tρ]〉oσ) contains an irreducible constituent of the form δm⊗σ′. Thus, there
are 0 ≤ j ≤ i ≤ b− t− a− s+ 1 and an irreducible constituent π ⊗ σ′′ of µ∗(σ) such that

δm ≤ 〈[ν−b+tρ, ν−i−a−sρ]〉 × 〈[νa+sρ, νj+a+s−1ρ]〉 × π,

but this implies that νbmρ appears in the cuspidal support of σ and bm = a + x, for some
x ∈ Z, a contradiction.

Let us now assume that there is some i ∈ {1, 2, . . . , k} such that ai = bi − 1. Note that
this implies a ≤ 0. Let us prove that then we have aj = bj − 1 for all j ≥ i. Suppose, on
the contrary, that there is a positive integer n such that an = bn and an−1 = bn−1 − 1.

Then we have µ∗(〈[νan−1+1ρ, ν−an−1ρ]〉o σ) ≥ δ([νan−1ρ, νan−1+1ρ])⊗L(δn, . . . , δk, τ) and
µ∗(〈[νan−1+2ρ, ν−an−1−1ρ]〉 o σ) ≥ νanρn ⊗ L(δn+1, . . . , δk, τ). Consequently, ρn ∼= ρ and
an ∈ {an−1 + 1, an−1 + 2}. If an = an−1 + 1, we have the following embeddings and
isomorphisms:

L(δn−1, δn, . . . , δk, τ) ↪→ δ([νan−1ρ, νan−1+1ρ]) o L(δn, . . . , δk, τ)

↪→ δ([νan−1ρ, νan−1+1ρ])× νan−1+1ρo L(δn+1, . . . , δk, τ)

∼= νan−1+1ρ× δ([νan−1ρ, νan−1+1ρ]) o L(δn+1, . . . , δk, τ)

↪→ νan−1+1ρ× νan−1+1ρ× νan−1ρo L(δn+1, . . . , δk, τ).

By Lemma 2.2 or [15, Lemma 3.2], there is an irreducible representation τ ′ such that
L(δn−1, δn, . . . , δk, τ) is a subrepresentation of νan−1+1ρ × νan−1+1ρ o τ ′. Thus, we have
µ∗(〈[νan−1+1ρ, ν−an−1ρ]〉o σ) ≥ νan−1+1ρ× νan−1+1ρ⊗ τ ′, and using the structural formula
and square-integrability of σ it can be easily seen that this is impossible. Consequently,
an = an−1 + 2 and L(δn+1, . . . , δk, τ) ≤ 〈[νan−1+3ρ, ν−an−1−1ρ]〉 o σ. This implies ρn+1

∼= ρ
and an+1 = bn+1 = an−1 + 3, since e(δn) ≤ e(δn+1). Continuing in this way, we get that τ is
an irreducible subquotient of 〈[νan−1+cρ, ν−an−1−1ρ]〉o σ, for c ∈ Z such that an−1 + c ≤ 1

2
.

This contradicts Lemma 3.1, so we have aj = bj − 1 for all j ≥ i. We note that this is
possible only if a ∈ Z.

It follows from Lemma 2.6 that there is an y such that 2y ∈ Z≥0 and we have L(δk, τ) ≤
〈[ν−y+1ρ, νyρ]〉 o σ. Then we have ρk ∼= ρ, ak = −y and τ ≤ 〈[ν−y+2ρ, νy−1ρ]〉 o σ.
By Lemma 3.1, this is possible only if y = 1. Using [17, Theorem 2.1(ii)], we deduce
that δ([ρ, νρ]) o σ is irreducible and isomorphic to L(δk, τ), so µ∗(L(δk, τ)) contains an
irreducible constituent of the form νρ ⊗ τ ′′. On the other hand, it follows directly from
the structural formula that µ∗(〈[ρ, νρ]〉 o σ) does not contain an irreducible constituent
of the form νρ ⊗ τ ′′, so ai = bi for all i = 1, 2, . . . , k. Note that 2a + 1 − x 6∈ 2Z for
x ∈ Jordρ(σ), together with [15, Lemma 3.6], implies that µ∗(σ) does not contain an
irreducible constituent of the form νzρ⊗ τ ′ for z ∈ Z.

If a ∈ Z and a ≤ 0, let τ = ρ o σ, otherwise let τ = σ. Note that if a ∈ Z, then
ρ o σ is irreducible. If a = 0, let c = −1, and if a > 0 let c = −a. If a ≥ 0, let
π = L(ν−bρ, ν−b+1ρ, . . . , νcρ, τ), otherwise let

π = L(ν−bρ, ν−b+1ρ, . . . , νa−1ρ, νaρ, νaρ, νa+1ρ, νa+1ρ, . . . , νa−daeρ, νa−daeρ, τ).
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Lemmas 2.6 and 3.1 imply that every irreducible subquotient of 〈∆〉 o σ is isomorphic
to π. Lemma 3.2 shows that π appears in 〈∆〉 o σ with multiplicity one, so the induced
representation 〈∆〉o σ is irreducible. �

Proposition 3.5. Assume that ρ ∼= ρ̃ and Jordρ(σ) = ∅. Let use denote by sρ a unique
non-negative real number such that νsρρo σcusp reduces. Then 〈∆〉o σ reduces if and only

if a ≤ sρ, 2a is an integer, and 2a+ 1 is even if and only if ν
1
2ρo σcusp reduces.

Proof. The assumption Jordρ(σ) = ∅ implies that sρ ∈ {0, 12}. If either 2a 6∈ Z or a−sρ 6∈ Z,
one can prove in the same way as in the proof of Propositions 3.3 and 3.4 that 〈∆〉oσ is irre-
ducible. If a > sρ, from the cuspidal support of the induced representation 〈[νaρ, νa+lρ]〉oσ
we deduce that it does not contain an irreducible tempered subquotient. Now one can
obtain, in the same way as in the proof of Proposition 3.3, that every irreducible sub-
quotient of 〈∆〉 o σ is isomorphic to L(ν−bρ, ν−b+1ρ, . . . , ν−aρ, σ). Lemma 3.2 shows that
L(ν−bρ, ν−b+1ρ, . . . , ν−aρ, σ) appears in the composition series of 〈∆〉oσ with multiplicity
one, so 〈∆〉o σ is irreducible.

Let us now assume that a ≤ sρ, 2a ∈ Z and a− sρ ∈ Z. There are two cases to consider.
First, assume that a ∈ Z and write ρo σ = τ1 + τ2 in R(G), where τ1 and τ2 are mutually
non-isomorphic irreducible tempered representations. A repeated application of Lemmas
2.3 and 2.4 shows that both irreducible representations

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−1ρ, ν−1ρ, τi), i = 1, 2,

are contained in the composition series of 〈∆〉o σ, so 〈∆〉o σ reduces.
Let us now assume that a 6∈ Z and let σ′ denote a discrete series subrepresentation of

ν
1
2ρo σ constructed in the proof of Lemma 6.1 of [17]. A repeated application of Lemmas

2.3, 2.4 and 2.5 shows that both irreducible representations

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−
1
2ρ, ν−

1
2ρ, σ),

and
L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−

3
2ρ, ν−

3
2ρ, ν−

1
2ρ, σ′)

are contained in 〈∆〉o σ, so 〈∆〉o σ reduces. �

We note that, in the case when charF = 0, the last three propositions also follow from
[6, Theorem 10.5] and [23, Theorem 13.2].

4. Main reducibility criterion in the a ≥ 1 case

Let ρ ∈ R(GL) stand for an irreducible self-contragredient cuspidal representation, and
let a, b ∈ R such that a+ b ∈ Z≥0 and 2a, 2b ∈ Z. Let ∆ = [νaρ, νbρ]. Let σ ∈ R(G) denote
a discrete series representation.

From now on, we assume that Jordρ(σ) 6= ∅ and that for x ∈ Jordρ(σ) we have 2a+1−x ∈
2Z.

In this section we obtain the irreducibility criterion for 〈∆〉o σ in the a ≥ 1 case.

Lemma 4.1. Let c, d ∈ R such that c+d ∈ Z≥0 and for x ∈ Jordρ(σ) we have 2c+ 1−x ∈
2Z. Suppose that c ≥ 1 and that one of the following holds:
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(1) 2c− 1 6∈ Jordρ(σ),
(2) x ∈ Jordρ(σ) for all x ∈ {2c− 1, 2c+ 1, . . . , 2d+ 1}, and εσ((x , ρ), (x, ρ)) = −1 for all

x ∈ {2c+ 1, 2c+ 3, . . . , 2d+ 1}.
Then 〈[νcρ, νdρ]〉o σ does not contain an irreducible tempered subquotient.

Proof. If 2c − 1 6∈ Jordρ(σ), the claim of the lemma can be obtained using the cuspidal
support considerations, following the similar reasoning as in [4, Subsection 4.2.1], before
[4, Proposition 4.6].

Let us now assume that x ∈ Jordρ(σ) for all x ∈ {2c− 1, 2c + 1, . . . , 2d + 1}. It follows
from the cuspidal support considerations that every irreducible tempered subquotient τ
of 〈[νcρ, νdρ]〉 o σ can be written as a subrepresentation of an induced representation of
the form δ([ν−dρ, νdρ]) o τ ′, for some irreducible tempered representation τ ′. Thus, if
τ ≤ 〈[νcρ, νdρ]〉 o σ, then µ∗(〈[νcρ, νdρ]〉 o σ) ≥ δ([ν−dρ, νdρ]) ⊗ τ ′. By the structural
formula, there are 0 ≤ j ≤ i ≤ d − c + 1 and an irreducible constituent π ⊗ σ′ of µ∗(σ)
such that

δ([ν−dρ, νdρ]) ≤ 〈[ν−dρ, ν−i−cρ]〉 × 〈[νcρ, νj+c−1ρ]〉 × π.
It follows that the Jacquet module of π with respect to the appropriate parabolic subgroup
contains an irreducible constituent of the form νdρ⊗π′. Transitivity of Jacquet modules and
[24, Proposition 7.2] now imply that εσ(((2d+ 1) , ρ), (2d+ 1, ρ)) = 1, a contradiction. �

Proposition 4.2. Suppose that a ≥ 1 and that one of the following holds:

(1) 2a− 1 6∈ Jordρ(σ),
(2) x ∈ Jordρ(σ) for all x ∈ {2a− 1, 2a+ 1, . . . , 2b+ 1}, and εσ((x , ρ), (x, ρ)) = −1 for all

x ∈ {2a+ 1, 2a+ 3, . . . , 2b+ 1}.
Then the induced representation 〈∆〉o σ is irreducible.

Proof. Using Lemma 4.1, in the same way as in the proof of Proposition 3.3 we conclude
that every irreducible subquotient of 〈∆〉oσ is isomorphic to L(ν−bρ, ν−b+1ρ, . . . , ν−aρ, σ).
Lemma 3.2 implies that such an irreducible representation appears in the composition
series of 〈∆〉o σ with multiplicity one, so 〈∆〉o σ is irreducible. �

Lemma 4.3. Let c ∈ R be such that for x ∈ Jordρ(σ) we have 2c + 1 − x ∈ 2Z. Suppose
that c > 0, 2c − 1 ∈ Jordρ(σ) and 2c + 1 6∈ Jordρ(σ). Then the induced representation
νcρo σ contains a unique irreducible subrepresentation which is square-integrable.

Proof. By [17, Theorem 6.1], the induced representation νcρo σ reduces. It can be easily
obtained from the structural formula, using 2c + 1 6∈ Jordρ(σ) and [15, Lemma 3.6], that
νcρ⊗σ appears in µ∗(νcρoσ) with multiplicity one, so νcρoσ has a unique irreducible sub-
representation. From [17, Lemma 2.2] we deduce that νcρoσ contains a unique irreducible
non-tempered subquotient, L(ν−cρ, σ). Also, from [15] we get that νcρoσ does not contain
irreducible tempered subquotients which are not square-integrable, since 2c+1 6∈ Jordρ(σ).
Thus, a unique irreducible subrepresentation of νcρo σ has to be square-integrable. �

Lemma 4.4. Let c, d ∈ R such that c + d ∈ Z≥0 and for x ∈ Jordρ(σ) we have 2c +
1 − x ∈ 2Z. Suppose that c ≥ 1, x ∈ Jordρ(σ) for all x ∈ {2c − 1, 2c + 1, . . . , 2d − 1},



14 IVAN MATIĆ

εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {2c+ 1, 2c+ 3, . . . , 2d− 1} and 2d+ 1 6∈ Jordρ(σ). Then
〈[νcρ, νdρ]〉o σ contains a discrete series subrepresentation.

Proof. By Lemma 4.3, νdρ o σ contains a unique discrete series subrepresentation, which
we denote by σ1. Let n stand for d−c+1. For i = 2, 3, . . . , n, we inductively define discrete
series σi by σi ↪→ νd−i+1ρoσi−1. From [24, Lemma 8.1] we deduce that εσn((x , ρ), (x, ρ)) =
−1 for all x ∈ {2c+ 1, 2c+ 3, . . . , 2d+ 1}. It follows that σn is not a subrepresentation of
an induced representation of the form νyρoσ′ for y ∈ c+1, c+2, . . . , d, and σ′ irreducible.
Obviously, we have

σn ↪→ νcρ× νc+1ρ× · · · × νdρo σ.

From Lemma 2.2 we get that there is some irreducible subquotient π of νcρ × νc+1ρ ×
· · · × νd such that σn is a subrepresentation of π o σ. It directly follows that π can
not be a subrepresentation of an induced representation of the form νyρ o π′ for y ∈
{c+ 1, c+ 2, . . . , d} and π′ irreducible, so we conclude that π ∼= 〈[νcρ, νdρ]〉 and the lemma
is proved. �

To study the tempered case, we need the following result which follows from [2, Théorème 0.1]
or from [7, Lemma 1.3.3].

Lemma 4.5. Let c, d denote positive real numbers such that 2c, 2d ∈ Z and c < d. Let
ρ ∈ R(GL) denote an irreducible cuspidal representation. Then the induced representation
δ([ν−dρ, νdρ])×〈[νcρ, νd−1ρ]〉 is irreducible and isomorphic to 〈[νcρ, νd−1ρ]〉×δ([ν−dρ, νdρ]).

Lemma 4.6. Let c, d ∈ R such that c + d ∈ Z≥0 and for x ∈ Jordρ(σ) we have 2c +
1 − x ∈ 2Z. Suppose that c ≥ 1, x ∈ Jordρ(σ) for all x ∈ {2c − 1, 2c + 1, . . . , 2d + 1},
εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {2c+1, 2c+3, . . . , 2d−1} and εσ((2d−1, ρ), (2d+1, ρ)) =
1. Then 〈[νcρ, νdρ]〉o σ contains an irreducible tempered subrepresentation.

Proof. If c = d, the claim of the lemma follows in the same way as in the proof of Lemma 4.3.
So, we may assume that c < d. Let us denote by σ′ a discrete series representation such that
σ is a subrepresentation of δ([ν−d+1ρ, νdρ])o σ′. It follows from [15] or [10, Theorem 3.15]
that x ∈ Jordρ(σ

′) for all x ∈ {2c − 1, 2c + 1, . . . , 2d − 3}, εσ((x , ρ), (x, ρ)) = −1 for all
x ∈ {2c + 1, 2c + 3, . . . , 2d− 3} and 2d− 1 6∈ Jordρ(σ). We denote by σ′′ a discrete series
subrepresentation of 〈[νcρ, νd−1ρ]〉o σ′ constructed in Lemma 4.4.

It is well-know ([15] or [16, Theorem 2.1]) that the induced representation δ([ν−d+1ρ, νdρ])o
σ′ is a representation of length three, which contains two mutually non-isomorphic discrete
series subrepresentations. Let use denote a discrete series subrepresentation different than
σ by σ1. Then we have εσ1((2d − 3, ρ), (2d − 1, ρ)) = 1. Also, if π is an irreducible sub-
quotient of δ([ν−d+1ρ, νdρ]) o σ′ such that µ∗(π) contains an irreducible constituent of the
form νdρ⊗ π′, then π ∈ {σ, σ1}.

We note that, since εσ((2d − 3, ρ), (2d − 1, ρ)) = −1, it follows from the proof of [10,
Theorem 3.15] that σ is a subrepresentation of the induced representation νdρo τ1, where
τ1 is an irreducible tempered subrepresentation of δ([ν−d+1ρ, νd−1ρ]) o σ′ such that µ∗(τ1)
does not contain an irreducible constituent of the form νd−1ρ × νd−1ρ ⊗ π. On the other
hand, σ1 is a subrepresentation of the induced representation νdρ o τ2, where τ2 is an
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irreducible tempered subrepresentation of δ([ν−d+1ρ, νd−1ρ])oσ′ such that µ∗(τ2) contains
an irreducible constituent of the form νd−1ρ× νd−1ρ⊗ π.

By [24, Lemma 4.1], there is a unique irreducible tempered subrepresentation τ of
δ([ν−dρ, νdρ])o σ′′ such that µ∗(τ) does not contain an irreducible constituent of the form
νdρ× νdρ⊗ π. By Lemma 4.5, we have

τ ↪→ 〈[νcρ, νd−1ρ]〉 × δ([ν−dρ, νdρ]) o σ′.

Lemma 2.2 shows that there is an irreducible subquotient τ ′ of δ([ν−dρ, νdρ])oσ′ such that
τ ↪→ 〈[νcρ, νd−1ρ]〉oτ ′. If τ ′ is a subrepresentation of an induced representation of the form
δ([νd−1ρ, νdρ])× δ([νd−1ρ, νdρ])o τ ′1, we have the following embeddings and isomorphisms:

τ ↪→ 〈[νcρ, νd−1ρ]〉 × δ([νd−1ρ, νdρ])× δ([νd−1ρ, νdρ]) o τ ′1

↪→ 〈[νcρ, νd−2ρ]〉 × νd−1ρ× δ([νd−1ρ, νdρ])× δ([νd−1ρ, νdρ]) o τ ′1
∼= 〈[νcρ, νd−2ρ]〉 × δ([νd−1ρ, νdρ])× δ([νd−1ρ, νdρ])× νd−1ρo τ ′1

↪→ 〈[νcρ, νd−2ρ]〉 × νdρ× νdρ× νd−1ρ× νd−1ρ× νd−1ρo τ ′1
∼= νdρ× νdρ× 〈[νcρ, νd−2ρ]〉 × νd−1ρ× νd−1ρ× νd−1ρo τ ′1,

and µ∗(τ) contains an irreducible constituent of the form νdρ × νdρ ⊗ π, a contradiction.
It follows that τ ′ is a unique irreducible subrepresentation of δ([ν−dρ, νdρ])oσ′ which does
not contain an irreducible constituent of the form δ([νd−1ρ, νdρ]) × δ([νd−1ρ, νdρ]) ⊗ τ ′1 in
the Jacquet module with respect to an appropriate parabolic subgroup.

Also, τ ′ ↪→ δ([ν−d+1ρ, νdρ]) × ν−dρ o σ′ and, since ν−dρ o σ′ ∼= νdρ o σ′ by [17, Theo-
rem 6.1], a commuting argument shows τ ′ ↪→ νdρ× δ([ν−d+1ρ, νdρ])oσ′. Thus, by Lemma
2.2, there is an irreducible subquotient π of δ([ν−d+1ρ, νdρ]) o σ′ such that τ ′ ↪→ νdρo π.
Since τ ′ ↪→ νdρ× νdρ× δ([ν−d+1ρ, νd−1ρ]) o σ′, it follows that µ∗(π) ≥ νdρ⊗ π1, for some
irreducible π1. Consequently, π ∈ {σ, σ1}.

Suppose that π ∼= σ1. Then, using [24, Corollary 4.2], we get π ↪→ νdρ×νd−1ρ×νd−1ρoπ′,
for some irreducible π′. This leads to an embedding τ ′ ↪→ νdρ× νdρ× νd−1ρ× νd−1ρo π′,
and there is an irreducible subquotient π2 of νdρ × νdρ × νd−1ρ × νd−1ρ such that τ ′ ↪→
π2oπ′. Since τ ′ is a subquotient of δ([ν−dρ, νdρ])oσ′, we get that µ∗(τ ′) does not contain
an irreducible constituent of the form νd−1ρ ⊗ π′′. This implies π2 ∼= δ([νd−1ρ, νdρ]) ×
δ([νd−1ρ, νdρ]), which is impossible.

Consequently, π ∼= σ and τ ′ ↪→ νdρo σ. This shows that

τ ↪→ 〈[νcρ, νd−1ρ]〉 × νdρo σ.

It follows that there is an irreducible subquotient π1 of 〈[νcρ, νd−1ρ]〉 × νdρ such that
τ ↪→ π1 o σ. Thus,

π1 ∈ {〈[νcρ, νdρ]〉, L(νcρ, νc+1ρ, . . . , νd−2ρ, δ([νd−1ρ, νdρ]))}.
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Suppose that π1 ∼= L(νcρ, νc+1ρ, . . . , νd−2ρ, δ([νd−1ρ, νdρ])). Since σ ↪→ νdρo τ1, using the
commuting argument we obtain the following embeddings and isomorphisms:

τ ↪→ L(νcρ, νc+1ρ, . . . , νd−2ρ, δ([νd−1ρ, νdρ]))× νdρo τ1

↪→ νcρ× νc+1ρ× · · · × νd−2ρ× δ([νd−1ρ, νdρ]))× νdρo τ1
∼= νcρ× νc+1ρ× · · · × νd−2ρ× νdρ× δ([νd−1ρ, νdρ])) o τ1

↪→ νcρ× νc+1ρ× · · · × νd−2ρ× νdρ× νdρ× νd−1ρo τ1
∼= νdρ× νdρ× νcρ× νc+1ρ× · · · × νd−2ρ× νd−1ρo τ1.

This implies that µ∗(τ) ≥ νdρ× νdρ⊗ π′1, for some irreducible π′1, a contradiction. Thus,
π1 ∼= 〈[νcρ, νdρ]〉 and the lemma is proved. �

Proposition 4.7. Suppose that a ≥ 1, 2a − 1 ∈ Jordρ(σ), and that one of the following
holds:

(1) there is an x ∈ {2a+ 1, 2a+ 3, . . . , 2b+ 1} such that x 6∈ Jordρ(σ),
(2) there is an x ∈ {2a+1, 2a+3, . . . , 2b+1} such that x ∈ Jordρ(σ) and εσ((x , ρ), (x, ρ)) =

1.

Then the induced representation 〈∆〉o σ reduces.

Proof. A repeated application of Lemma 2.3 shows that L(ν−bρ, ν−b+1ρ, . . ., ν−aρ, σ) is an
irreducible subquotient of 〈∆〉o σ.

Let us denote by x1 the minimal x ∈ {2a+ 1, 2a+ 3, . . . , 2b+ 1} such that x 6∈ Jordρ(σ),
if such x exists. Otherwise, let x1 = 2b+ 3.

Also, let us denote by x2 the minimal x ∈ {2a + 1, 2a + 3, . . . , 2b + 1} such that x ∈
Jordρ(σ) and εσ((x , ρ), (x, ρ)) = 1, if such x exists. Otherwise, let x2 = 2b+ 3.

Let xmin stand for min{x1−1
2
, x2−1

2
}. By conditions of the lemma, we have a ≤ xmin ≤ b.

Previous two lemmas show that there is an irreducible tempered subrepresentation τ of
〈[νaρ, νxminρ]〉 o σ. Note that τ 6∼= σ. A repeated application of Lemma 2.3 implies that
L(ν−bρ, ν−b+1ρ, . . . , ν−xmin−1ρ, τ) is an irreducible subquotient of 〈∆〉 o σ, different than
L(ν−bρ, ν−b+1ρ, . . . , ν−aρ, σ). Consequently, 〈∆〉o σ reduces. �

As a consequence of Propositions 4.2 and 4.7, we obtain our first main result.

Theorem 4.8. Suppose that a ≥ 1. The induced representation 〈∆〉 o σ is irreducible if
and only if one of the following holds:

(1) 2a− 1 6∈ Jordρ(σ),
(2) x ∈ Jordρ(σ) for all x ∈ {2a− 1, 2a+ 1, . . . , 2b+ 1}, and εσ((x , ρ), (x, ρ)) = −1 for all

x ∈ {2a+ 1, 2a+ 3, . . . , 2b+ 1}.

5. Main reducibility criterion in the a ≤ 1
2

case

In this section we obtain the reducibility criterion for 〈∆〉 o σ in the a ≤ 1
2

case. We
continue with the notation introduced in the previous section.

We will first handle the case a ∈ Z. In this case, we assume that charF = 0, since we
will use [15, Theorem 13.1].
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In the same way as in the proof of Lemma 4.1, we get the following result.

Lemma 5.1. Let c, d ∈ R such that c + d ∈ Z≥0 and for x ∈ Jordρ(σ) we have 2c +
1 − x ∈ 2Z. Suppose that c ∈ Z, c ≤ 0, x ∈ Jordρ(σ) for all x ∈ {1, 3, . . . , 2d + 1} and
εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {3, 5, . . . , 2d + 1}. Then 〈[νcρ, νdρ]〉 o σ contains an
irreducible tempered subquotient if and only if c = d = 0.

Proposition 5.2. Suppose that a ∈ Z, a ≤ 0, x ∈ Jordρ(σ) for all x ∈ {1, 3, . . . , 2b + 1}
and εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {3, 5, . . . , 2b + 1}. Then the induced representation
〈∆〉o σ is irreducible.

Proof. We have already seen that there are no irreducible tempered subquotients of 〈∆〉oσ.
Let L(δ1, δ2, . . . , δk, τ) denote a non-tempered irreducible subquotient of 〈∆〉 o σ, where
δi = δ([νaiρi, ν

biρi]), for i = 1, 2, . . . , k. First we prove that for every i = 1, 2, . . . , k we
have bi − ai ≤ 1. Suppose, on the contrary, that there is some i such that bi − ai ≥ 2 and
let us denote the minimal such i by n. As before, there are c ≥ a and 0 < d ≤ b such
that L(δn, δn+1, . . . , δk, τ) is a subquotient of 〈[νcρ, νdρ]〉o σ. Thus, µ∗(〈[νcρ, νdρ]〉o σ) ≥
δn⊗L(δn+1, . . . , δk, τ). Structural formula implies that there are 0 ≤ j ≤ i ≤ d− c+ 1 and
an irreducible constituent π ⊗ σ′ of µ∗(σ) such that

δ([νanρn, ν
bnρn]) ≤ 〈[ν−dρ, ν−i−cρ]〉 × 〈[νcρ, νj+c−1ρ]〉 × π.

Since bn− an ≥ 2, we get ρn ∼= ρ and π ∼= δ([νyρ, νbnρ]) for some y ≥ an. Since an + bn < 0
and square-integrability of σ implies y + bn > 0, we obtain that −d + 2 = y < bn, which
implies εσ(((2d+ 1) , ρ), (2d+ 1, ρ)) = 1, a contradiction.

Consequently, for all i = 1, 2, . . . , k we have bi− ai ≤ 1. In the same way as in the proof
of Proposition 3.4, using the fact that δ([ρ, νρ])oσ is irreducible by [17, Theorem 5.1], one
can prove that ai = bi for all i = 1, 2, . . . , k. In consequence, every irreducible subquotient
of 〈∆〉o σ is isomorphic to

(1) L(ν−bρ, ν−b+1ρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−1ρ, ν−1ρ, ρo σ).

Note that ρo σ is irreducible since 1 ∈ Jordρ(σ). Lemma 3.2 implies that the irreducible
representation (1) appears in the composition series of 〈∆〉 o σ with multiplicity one, so
〈∆〉o σ is irreducible. �

Lemma 5.3. Let d ∈ Z≥0 such that for x ∈ Jordρ(σ) we have 2d + 1 − x ∈ 2Z. Suppose
that 2d+ 1 6∈ Jordρ(σ), 1, 3, . . . , 2d− 1 ∈ Jordρ(σ), and εσ((x , ρ), (x, ρ)) = −1 for all x ∈
{3, 5, . . . , 2d− 1}. Then 〈[ρ, νdρ]〉o σ contains an irreducible tempered subrepresentation.

Proof. We may assume that d > 0, otherwise the claim of the lemma is trivial.
By Lemma 4.4, there is a discrete series subrepresentation of 〈[νρ, νdρ]〉 o σ, and let

us denote such a representation by σ′. Since 1 6∈ Jordρ(σ
′), induced representation ρ o

σ′ reduces and it is a direct sum of two mutually non-isomorphic irreducible tempered
representations. By [24, Lemma 4.7], there is a unique irreducible subrepresentation τ of
ρo σ′ which is not a subrepresentation of an induced representation of the form νρo σ′′,
for some irreducible σ′′. Thus,

τ ↪→ ρo σ′ ↪→ ρ× 〈[νρ, νdρ]〉o σ,
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so, by Lemma 2.2 there is an irreducible subquotient π of ρ×〈[νρ, νdρ]〉 such that τ ↪→ πoσ.
Since π is not a subrepresentation of an induced representation of the form νρ×π′, it follows
at once that π ∼= 〈[ρ, νdρ]〉. �

Lemma 5.4. Let d ∈ Z≥0 such that for x ∈ Jordρ(σ) we have 2d + 1 − x ∈ 2Z. Suppose
that 1, 3, . . . , 2d + 1 ∈ Jordρ(σ), εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {3, 5, . . . , 2d − 1},
and εσ((2d − 1, ρ), (2d + 1, ρ)) = 1. Then 〈[ρ, νdρ]〉 o σ contains an irreducible tempered
subrepresentation.

Proof. If d = 0, there is nothing to prove.
If d = 1, let us denote by τ1 the irreducible tempered subrepresentation of νρ o σ con-

structed in [17, Section 6]. Note that τ1 is a subrepresentation of the induced representation
of the form δ([ν−1ρ, νρ]) o σ′, for a discrete series σ′ such that σ is a subrepresentation of
δ([ρ, νρ]) o σ′. Thus, 1, 3 6∈ Jordρ(σ

′). Also, by the classification of discrete series, there is
an irreducible tempered subrepresentation τ ′ of ρoσ′ such that σ is a subrepresentation of
νρo τ ′. Note that we also have τ1 ↪→ νρ× νρo τ ′. Using [15, Theorem 13.1(i)], we deduce
that ρoτ1 reduces, and it can be easily seen that it is a length two representation such that
the unique irreducible constituent of µ∗(ρoτ1) of the form νρ×νρ⊗π is νρ×νρ⊗ρoτ ′, and
it appears in µ∗(ρ o τ1) with multiplicity one. Let us denote by τ2 the unique irreducible
tempered subrepresentation of ρoτ1 which does not contain νρ×νρ⊗ρoτ ′ in the Jacquet
module with respect to the appropriate parabolic subgroup. Then τ2 ↪→ ρ × νρ o σ and,
by Lemma 2.2, there is an irreducible subquotient π of ρ× νρ such that τ2 ↪→ πoσ. From
εσ((1, ρ), (3, ρ)) = 1 we deduce that σ ↪→ νρ o τ3 for an irreducible tempered representa-
tion τ3, which gives π 6∼= δ([ρ, νρ]), since otherwise we would have τ2 ↪→ νρ × νρ × ρ o τ ′.
Consequently, π ∼= 〈[ρ, νρ]〉.

Now we consider the case d ≥ 2. Since εσ((2d − 1, ρ), (2d + 1, ρ)) = 1, there is a
discrete series representation σ′ such that σ ↪→ δ([ν−d+1ρ, νdρ]) o σ′. By [15, Proposi-
tion 2.1, Lemma 5.1] or [10, Proposition 3.1, Theorem 3.15] we have {1, 3, . . . , 2d − 3} ⊆
Jordρ(σ

′) and εσ′((x , ρ), (x, ρ)) = −1 for x ∈ {3, 5, . . . , 2d−3}. We denote by σ′′ a discrete
series subrepresentation of 〈[νρ, νd−1ρ]〉o σ′ obtained in Lemma 4.4.

The induced representation δ([ν−dρ, νdρ])oσ′′ is a direct sum of two irreducible mutually
non-isomorphic tempered representations, and by [24, Lemma 4.1] exactly one of them does
not contain an irreducible constituent of the form νdρ × νdρ ⊗ π in the Jacquet module
with respect to the appropriate parabolic subgroup. Let us denote such a subrepresentation
by τ1. Now it can be proved in the same way as in the proof of Lemma 4.6 that τ1 ↪→
〈[νρ, νdρ]〉o σ.

Let us denote by σ′′1 a discrete series such that σ′′ ↪→ νρ o σ′′1 , constructed in [24,
Lemma 8.1]. Since

δ([ν−dρ, νdρ]) o σ′′ ↪→ δ([ν−dρ, νdρ])× νρo σ′′1
∼= νρ× δ([ν−dρ, νdρ]) o σ′′1 ,

both irreducible subrepresentations of δ([ν−dρ, νdρ]) o σ′′ contain an irreducible represen-
tation of the form νρ⊗ π in the Jacquet module with respect to the appropriate parabolic
subgroup. It is easy to see that π is an irreducible subquotient of δ([ν−dρ, νdρ]) o σ′′1 ,
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which is a length two representation. Let us denote by τ ′1 a unique irreducible tempered
subrepresentation of δ([ν−dρ, νdρ]) o σ′′1 such that µ∗(τ1) ≥ νρ⊗ τ ′1.

Using [15, Theorem 13.1(i)] and arguments similar to those used in the d = 1 case, we
conclude that ρoτ1 is a length two representation and, since ρoτ ′1 is irreducible, νρ⊗ρoτ ′1
is the unique irreducible constituent of µ∗(ρo τ1) of the form νρ⊗ π. Let us denote by τ2
an irreducible tempered subrepresentation of ρo τ1 which does not contain an irreducible
representation of the form νρ ⊗ π in the Jacquet module with respect to the appropriate
parabolic subgroup. From τ2 ↪→ ρ× 〈[νρ, νdρ]〉o σ we conclude in the same way as before
that τ2 ↪→ 〈[ρ, νdρ]〉o σ. �

Proposition 5.5. Suppose that a ∈ Z and a < 0. Suppose that one of the following holds:

(1) there is an x ∈ {1, 3, . . . , 2b+ 1} such that x 6∈ Jordρ(σ),
(2) there is an x ∈ {1, 3, . . . , 2b+ 1} such that x ∈ Jordρ(σ) and εσ((x , ρ), (x, ρ)) = 1.

Then 〈∆〉o σ reduces.

Proof. Let us denote by x1 the minimal x ∈ {1, 3, . . . , 2b + 1} such that x 6∈ Jordρ(σ),
if such x exists. Otherwise, let x1 = 2b + 3. Also, let us denote by x2 the minimal
x ∈ {3, 5, . . . , 2b + 1} such that x ∈ Jordρ(σ) and εσ((x , ρ), (x, ρ)) = 1, if such x exists.
Otherwise, let x2 = 2b+ 3.

Let xmin stand for min{x1−1
2
, x2−1

2
}. By conditions of the lemma, we have 0 ≤ xmin ≤ b.

If xmin = 0, then it follows that 1 6∈ Jordρ(σ), so in R(G) we can write ρo σ = τ1 + τ2,
where τ1 and τ2 are mutually non-isomorphic irreducible tempered representations. A
repeated application of Lemmas 2.3 and 2.4 shows that both irreducible representations

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−1ρ, ν−1ρ, τi), i = 1, 2,

are contained in 〈∆〉o σ, so 〈∆〉o σ reduces.
Let us now assume that xmin ≥ 1. Previous two lemmas show that there is an irreducible

tempered subrepresentation τ of 〈[ρ, νxminρ]〉o σ.
Thus, we have L(ν−1ρ, τ) ↪→ ν−1ρ× 〈[ρ, νxminρ]〉o σ, and Lemma 2.2 implies that there

is an irreducible subquotient π of ν−1ρ × 〈[ρ, νxminρ]〉 such that L(ν−1ρ, τ) ↪→ π o σ. By
[25, Theorem 7.1],

π ∈ {〈[ν−1ρ, νxminρ]〉, L(δ([ν−1ρ, ρ]), νρ, . . . , νxminρ)}.

If xmin > 1, since µ∗(L(ν−1ρ, τ)) ≥ ν−1ρ ⊗ τ , it follows that π ∼= 〈[ν−1ρ, νxminρ]〉,
since L(δ([ν−1ρ, ρ]), νρ, . . . , νxminρ) is a subrepresentation of δ([ν−1ρ, ρ])×〈[νρ, νxminρ]〉 and
µ∗(δ([ν−1ρ, ρ])× 〈[νρ, νxminρ]〉o σ) does not contain ν−1ρ⊗ τ .

Let us now assume that xmin = 1. It follows from proofs of previous two lemmas that
there is an irreducible tempered representation τ1 such that τ ↪→ ρo τ1 and τ1 ↪→ νρo σ.
Thus, L(ν−1ρ, τ) ↪→ ν−1ρ × ρ o τ1, and there is an irreducible subquotient π of ν−1ρ × ρ
such that L(ν−1ρ, τ) ↪→ π o τ1. Since τ1 is tempered and µ∗(L(ν−1ρ, τ)) ≥ ν−1ρ ⊗ τ , it
easily follows that π ∼= 〈[ν−1ρ, ρ]〉. Thus, we have

L(ν−1ρ, τ) ↪→ 〈[ν−1ρ, ρ]〉 × νρo σ,
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and, by Lemma 2.2, there is an irreducible subquotient π′ of 〈[ν−1ρ, ρ]〉 × νρ such that
L(ν−1ρ, τ) ↪→ π′ o σ. By [25, Theorem 7.1], π′ ∈ {〈[ν−1ρ, νρ]〉, L(ν−1ρ, δ([ρ, νρ]))}. Sup-
pose that π′ ∼= L(ν−1ρ, δ([ρ, νρ])). Let us first consider that case when σ is not a subrep-
resentation of an induced representation of the form νρo σ′. Then µ∗(τ) does not contain
an irreducible constituent of the form νρ⊗ σ′.

We have

L(ν−1ρ, τ) ↪→ ν−1ρ× νρ× ρo σ,

and the Jacquet module of L(ν−1ρ, τ) with respect to an appropriate parabolic subgroup
contains ν−1ρ ⊗ νρ ⊗ ρ ⊗ σ. Since τ is tempered, transitivity of Jacquet modules implies
that the Jacquet module of τ with respect to an appropriate parabolic subgroup contains
νρ⊗ ρ⊗ σ, which is impossible. So in this case we have π′ ∼= 〈[ν−1ρ, νρ]〉.

Let us now assume that σ is a subrepresentation of an induced representation of the
form νρ o σ′. Then µ∗(τ) contains an irreducible constituent of the form νρ ⊗ σ′, but it
does not contain an irreducible constituent of the form νρ× νρ⊗ σ′.

Using a simple commutativity argument, we obtain

L(ν−1ρ, τ) ↪→ ν−1ρ× νρ× νρ× ρo σ′,

and the Jacquet module of L(ν−1ρ, τ) with respect to an appropriate parabolic subgroup
contains ν−1ρ ⊗ νρ × νρ ⊗ ρ ⊗ σ. Since τ is tempered, transitivity of Jacquet modules
implies that the Jacquet module of τ with respect to an appropriate parabolic subgroup
contains νρ × νρ ⊗ ρ ⊗ σ, which is impossible. It follows that in this case we again have
π′ ∼= 〈[ν−1ρ, νρ]〉.

Consequently, µ∗(L(ν−1ρ, τ)) does not contain an irreducible constituent of the form
ρ⊗ τ ′.

Note that L(ν−xminρ, ν−xmin+1ρ, . . . , ν−1ρ, τ) is a subrepresentation of 〈[ν−xminρ, ν−1ρ]〉o
τ , since ν−xminρ × ν−xmin+1ρ × · · · × ν−1ρ o τ has a unique irreducible subrepresentation.
Thus, we have

L(ν−xminρ, ν−xmin+1ρ, . . . , ν−1ρ, τ) ↪→ 〈[ν−xminρ, ν−1ρ]〉 × 〈[ρ, νxminρ]〉o σ.

From Lemma 2.2 follows that there is an irreducible subquotient π of 〈[ν−xminρ, ν−1ρ]〉 ×
〈[ρ, νxminρ]〉 such that L(ν−xminρ, ν−xmin+1ρ, . . . , ν−1ρ, τ) is a subrepresentation of π o σ.
The only irreducible subquotients of 〈[ν−xminρ, ν−1ρ]〉 × 〈[ρ, νxminρ]〉 are 〈[ν−xminρ, νxminρ]〉
and

(2) L(ν−xminρ, ν−xmin+1ρ, . . . , ν−2ρ, δ([ν−1ρ, ρ]), νρ, . . . , νxminρ).

A commuting argument shows that the representation (2) is a subrepresentation of an
induced representation of the form ρ × π′. But, since L(ν−xminρ, ν−xmin+1ρ, . . . , ν−1ρ, τ) is
also a subrepresentation of 〈[ν−xminρ, ν−2ρ]〉oL(ν−1, τ), it follows at once that µ∗(L(ν−1, τ))
contains an irreducible constituent of the form ρ ⊗ τ ′, a contradiction. Consequently,
π ∼= 〈[ν−xminρ, νxminρ]〉.

If xmin ≥ −a, let π′ denote

L(ν−bρ, . . . , ν−xmin−1ρ, νaρ, . . . , ν−1ρ, τ).
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If xmin ≤ −a, let π′ denote

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−xmin−1ρ, ν−xmin−1ρ, ν−xminρ, . . . , ν−1ρ, τ).

Since L(ν−xminρ, . . . , ν−1ρ, τ) is contained in 〈[ν−xminρ, νxminρ]〉o σ, it can be seen, using
Lemmas 2.3 and 2.4, that π′ is an irreducible subquotient of 〈∆〉 o σ. Using the same
methods, it can be seen that

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−1ρ, ν−1ρ, ρo σ)

is also an irreducible subquotient of 〈∆〉o σ, so 〈∆〉o σ reduces. �

Propositions 5.2 and 5.5 imply our second main result.

Theorem 5.6. Suppose that a ∈ Z and a ≤ 0. The induced representation 〈∆〉 o σ is
irreducible if and only if x ∈ Jordρ(σ) for all x ∈ {1, 3, . . . , 2b+ 1} and εσ((x , ρ), (x, ρ)) =
−1 for all x ∈ {3, 5, . . . , 2b+ 1}.

It remains to handle the half-integral case. In the rest of this section we do not use the
assumption that charF = 0.

Lemma 5.7. Let c, d ∈ R such that c + d ∈ Z≥0 and for x ∈ Jordρ(σ) we have 2c +
1 − x ∈ 2Z. Suppose that c 6∈ Z, c ≤ 1

2
, x ∈ Jordρ(σ) for all x ∈ {2, 4, . . . , 2d + 1},

εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {4, 6, . . . , 2d+1}, and εσ(2, ρ) = −1. Then 〈[νcρ, νdρ]〉oσ
does not contain an irreducible tempered subquotient.

Proof. If d > 1
2
, claim of the lemma follows in the same way as in the proof of Lemma 4.1.

If d = 1
2
, then c ∈ {−1

2
, 1
2
}, and every irreducible tempered subquotient of 〈[νcρ, νdρ]〉o σ

is a subrepresentation of an induced representation of the form δ([ν−
1
2ρ, ν

1
2ρ]) o τ , for an

irreducible tempered representation τ . This gives µ∗(〈[νcρ, νdρ]〉oσ) ≥ δ([ν−
1
2ρ, ν

1
2ρ])⊗ τ .

Using the structural formula, we obtain that µ∗(σ) contains an irreducible constituent of

the form ν
1
2ρ⊗ τ ′, which contradicts εσ(2, ρ) = −1 by [24, Proposition 7.4]. �

Proposition 5.8. Suppose that a 6∈ Z, a ≤ 1
2
, x ∈ Jordρ(σ) for all x ∈ {2, 4, . . . , 2b + 1},

εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {4, 6, . . . , 2b + 1}, and εσ(2, ρ) = −1. Then the induced
representation 〈∆〉o σ is irreducible.

Proof. Lemma 5.7 shows that there are no irreducible tempered subquotients of 〈∆〉o σ.
Let L(δ1, δ2, . . . , δk, τ) denote a non-tempered irreducible subquotient of 〈∆〉 o σ, where
δi = δ([νaiρi, ν

biρi]), for i = 1, 2, . . . , k. Suppose that there is some i such that bi − ai ≥ 2
and let us denote the minimal such i with n. We have already seen that then there
are c ≥ a and d ≤ b such that L(δn, δn+1, . . . , δk, τ) is a subquotient of 〈[νcρ, νdρ]〉 o σ.
Thus, µ∗(〈[νcρ, νdρ]〉 o σ) ≥ δn ⊗ L(δn+1, . . . , δk, τ). Using the structural formula and
square-integrability of σ, following the same lines as in the proof of Proposition 5.2, we
deduce that ρn ∼= ρ, an = −d, and µ∗(σ) contains an irreducible constituent of the form
δ([ν−d+2ρ, νd−1ρ]) ⊗ σ′. If d − 1 ≥ 3

2
, this contradicts εσ((x , ρ), (x, ρ)) = −1 for all x ∈

{4, 6, . . . , 2b + 1}. On the other hand, if d− 1 = 1
2
, this contradicts εσ(2, ρ) = −1. So, for

all i = 1, 2, . . . , k we have bi − ai ≤ 1.
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Let us now suppose that there is an i ∈ {1, 2, . . . , k} such that bi − ai = 1. Following
the same lines as in the proof of Proposition 3.4, we get that then bj − aj = 1 for all
j ∈ {i, i + 1, . . . , k}, and that τ is an irreducible subquotient of 〈[νcρ, νdρ]〉 o σ, for c ≤
1
2
≤ d < b, contradicting the previous lemma.
Consequently, ai = bi for all i = 1, 2, . . . , k. Using the previous lemma we deduce that

every irreducible subquotient of 〈∆〉o σ is isomorphic to

(3) L(ν−bρ, ν−b+1ρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−
1
2ρ, ν−

1
2ρ, σ).

From Lemma 3.2 we conclude that the irreducible representation (3) appears in the com-
position series of 〈∆〉o σ with multiplicity one, so 〈∆〉o σ is irreducible. �

The following lemma is a special case of the results of [17, Section 6] or [9, Lemma 3.2(2)].

Lemma 5.9. Suppose that for x ∈ Jordρ(σ) we have x ∈ 2Z and that one of the following
holds:

(1) 2 6∈ Jordρ(σ),
(2) 2 ∈ Jordρ(σ) and εσ(2, ρ) = 1.

Then ν
1
2ρ o σ reduces and contains a unique irreducible subrepresentation, which is tem-

pered. Furthermore, if 2 6∈ Jordρ(σ) then such a representation is square-integrable.

Lemma 5.10. Suppose that for x ∈ Jordρ(σ) we have x ∈ 2Z. Let d > 1
2

such that
for x ∈ Jordρ(σ) we have 2d + 1 − x ∈ 2Z. Suppose that 2, 4, . . . , 2d − 1 ∈ Jordρ(σ),
2d+ 1 6∈ Jordρ(σ), εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {4, 6, . . . , 2d− 1}, and εσ(2, ρ) = −1.

Then 〈[ν 1
2ρ, νdρ]〉o σ contains an irreducible discrete series subrepresentation.

Proof. By Lemma 4.4, there is a discrete series subrepresentation of 〈[ν 3
2ρ, νdρ]〉o σ, and

let us denote such a representation by σ′. Since εσ(2, ρ) = −1, it follows that µ∗(σ′) does

not contain an irreducible constituent of the form δ([ν
1
2ρ, ν

3
2ρ])⊗ π, and [24, Lemma 8.1]

implies εσ′(4, ρ) = −1.
Since 2 6∈ Jordρ(σ

′), Lemma 5.9 implies that there is a discrete series subrepresen-

tation σ′′ of ν
1
2 o σ′. Let us prove that εσ′′((2, ρ), (4, ρ)) = −1. Otherwise, µ∗(σ′′) ≥

δ([ν−
1
2ρ, ν

3
2ρ]) ⊗ σ1, for some irreducible representation σ1. Consequently, µ∗(ν

1
2 o σ′) ≥

δ([ν−
1
2ρ, ν

3
2ρ])⊗σ1. Using the structural formula and square-integrability of σ′, we deduce

that µ∗(σ′) ≥ δ([ν
1
2ρ, ν

3
2ρ])⊗ σ2, for some irreducible σ2, contradicting εσ′(4, ρ) = −1.

We have σ′′ ↪→ ν
1
2 ×〈[ν 3

2ρ, νdρ]〉o σ and, by Lemma 2.2, there is an irreducible subquo-

tient π of ν
1
2 × 〈[ν 3

2ρ, νdρ]〉 such that σ′′ ↪→ π o σ. From εσ′′((2, ρ), (4, ρ)) = −1 we easily

obtain π ∼= 〈[ν
1
2ρ, νdρ]〉 and the lemma is proved. �

The following result can be proved in the same way as Lemma 4.6.

Lemma 5.11. Suppose that for x ∈ Jordρ(σ) we have x ∈ 2Z. Let d > 1
2

such that
for x ∈ Jordρ(σ) we have 2d + 1 − x ∈ 2Z. Suppose that 2, 4, . . . , 2d + 1 ∈ Jordρ(σ),
εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {4, 6, . . . , 2d − 1}, εσ((2d − 1, ρ), (2d + 1, ρ)) = 1, and

εσ(2, ρ) = −1. Then 〈[ν 1
2ρ, νdρ]〉o σ contains an irreducible tempered subrepresentation.
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Proposition 5.12. Suppose that a 6∈ Z, a ≤ 1
2
. Suppose that one of the following holds:

(1) 2 6∈ Jordρ(σ),
(2) 2 ∈ Jordρ(σ) and εσ(2, ρ) = 1,
(3) 2 ∈ Jordρ(σ), εσ(2, ρ) = −1, and there is x ∈ {2, 4, . . . , 2b+ 1} such that x 6∈ Jordρ(σ),
(4) 2 ∈ Jordρ(σ), εσ(2, ρ) = −1, and there is x ∈ {2, 4, . . . , 2b+ 1} such that x ∈ Jordρ(σ)

and εσ((x , ρ), (x, ρ)) = 1.

Then 〈∆〉o σ reduces.

Proof. It can be seen, using a repeated application of Lemmas 2.3 and 2.4, that

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−
1
2ρ, ν−

1
2ρ, σ),

is a subquotient of 〈∆〉o σ.
Let us first assume that either 2 6∈ Jordρ(σ), or 2 ∈ Jordρ(σ) and εσ(2, ρ) = 1. Lemma

5.9 implies that there is an irreducible tempered subrepresentation τ of ν
1
2ρo σ. Using a

repeated application of Lemmas 2.3, 2.4 and 2.5 we deduce that

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−
3
2ρ, ν−

3
2ρ, ν−

1
2ρ, τ),

is a subquotient of 〈∆〉o σ, so we have obtained a reducibility in this case.
Let us now assume that 2 ∈ Jordρ(σ) and εσ(2, ρ) = −1.
We denote by x1 the minimal x ∈ {2, 4, . . . , 2b + 1} such that x 6∈ Jordρ(σ), if such x

exists. Otherwise, let x1 = 2b+3. Also, let us denote by x2 the minimal x ∈ {4, 6, . . . , 2b+
1} such that x ∈ Jordρ(σ) and εσ((x , ρ), (x, ρ)) = 1, if such x exists. Otherwise, let
x2 = 2b+ 3.

Let xmin stand for min{x1−1
2
, x2−1

2
}. Conditions of the lemma, together with the assump-

tion 2 ∈ Jordρ(σ), imply 3
2
≤ xmin ≤ b.

By Lemmas 5.10 and 5.11, there is an irreducible tempered subrepresentation τ of
〈[ν 1

2ρ, νxminρ]〉o σ.

In the same way as in the proof of Lemma 2.5, we get that L(ν−
1
2ρ, τ) is a subrepresen-

tation of 〈[ν− 1
2ρ, νxminρ]〉o σ. Using the structural formula and εσ(2, ρ) = −1, it is easy to

deduce that µ∗(L(ν−
1
2ρ, τ)) does not contain an irreducible constituent of the form ν

1
2ρ⊗τ ′.

Now we are in position to repeat the same arguments as in the proof of Proposition 5.5,
and obtain

(4) L(ν−xminρ, ν−xmin+1ρ, . . . , ν−
1
2ρ, τ) ↪→ 〈[ν−xminρ, νxminρ]〉o σ.

If xmin ≥ −a, let π′ denote

L(ν−bρ, . . . , ν−xmin−1ρ, νaρ, . . . , ν−
1
2ρ, τ).

If xmin ≤ −a, let π′ denote

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−xmin−1ρ, ν−xmin−1ρ, ν−xminρ, . . . , ν−
1
2ρ, τ).

Starting from the embedding (4), and using Lemmas 2.3 and 2.4, it can be seen that π′

is an irreducible subquotient of 〈∆〉o σ. Consequently, 〈∆〉o σ also reduces in this case,
and the proposition is proved. �
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From Propositions 5.8 and 5.12 we obtain our final main result.

Theorem 5.13. Suppose that a 6∈ Z and a ≤ 1
2
. The induced representation 〈∆〉 o σ is

irreducible if and only if x ∈ Jordρ(σ) for all x ∈ {2, 4, . . . , 2b+ 1}, εσ((x , ρ), (x, ρ)) = −1
for all x ∈ {4, 6, . . . , 2b+ 1}, and εσ(2, ρ) = −1.

References

[1] J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic groups, vol. 61
of American Mathematical Society Colloquium Publications, American Mathematical Society, Provi-
dence, RI, 2013.

[2] I. Badulescu, E. Lapid, and A. Mı́nguez, Une condition suffisante pour l’irréductibilité d’une
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[15] C. Mœglin and M. Tadić, Construction of discrete series for classical p-adic groups, J. Amer.
Math. Soc., 15 (2002), pp. 715–786.
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